Выдержка из дипломной работы, по теме: Модель множественной регресии: содержание, свойства, анализ, вариации зависимой переменной в регресии - несет исключительно ознакомительное назначение и может отличатся от имеющейся в наличии. Рекомендуем скачать краткую - версию для получения более полного представления о предлагаемой курсовой работе.
Экономические явления, как правило, определяются большим числом одновременно и совокупно действующих факторов.
Общее назначение множественной регрессии (этот термин был впервые использован в работе Пирсона - Pearson, 1908) состоит в анализе связи между несколькими независимыми переменными (называемыми также регрессорами или предикторами) и зависимой переменной.
Например, агент по продаже недвижимости мог бы вносить в каждый элемент реестра размер дома (в квадратных футах), число спален, средний доход населения в этом районе в соответствии с данными переписи и субъективную оценку привлекательности дома. Как только эта информация собрана для различных домов, было бы интересно посмотреть, связаны ли и каким образом эти характеристики дома с ценой, по которой он был продан. Например, могло бы оказаться, что число спальных комнат является лучшим предсказывающим фактором (предиктором) для цены продажи дома в некотором специфическом районе, чем "привлекательность" дома (субъективная оценка). Могли бы также обнаружиться и "выбросы", т.е. дома, которые могли бы быть проданы дороже, учитывая их расположение и характеристики.
Специалисты по кадрам обычно используют процедуры множественной регрессии для определения вознаграждения адекватного выполненной работе. Можно определить некоторое количество факторов или параметров, таких, как "размер ответственности" (Resp) или "число подчиненных" (No_Super), которые, как ожидается, оказывают влияние на стоимость работы. Кадровый аналитик затем проводит исследование размеров окладов (Salary) среди сравнимых компаний на рынке, записывая размер жалования и соответствующие характеристики (т.е. значения параметров) по различным позициям.